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Abstract
Quantitative adult plant resistance (APR) to stem rust (Puccinia 
graminis f. sp. tritici) is an important breeding target in wheat 
(Triticum aestivum L.) and a potential target for genomic selection 
(GS). To evaluate the relative importance of known APR loci in 
applying GS, we characterized a set of CIMMYT germplasm 
at important APR loci and on a genome-wide profile using 
genotyping-by-sequencing (GBS). Using this germplasm, we 
describe the genetic architecture and evaluate prediction 
models for APR using data from the international Ug99 stem rust 
screening nurseries. Prediction models incorporating markers 
linked to important APR loci and seedling phenotype scores as 
fixed effects were evaluated along with the classic prediction 
models: Multiple linear regression (MLR), Genomic best linear 
unbiased prediction (G-BLUP), Bayesian Lasso (BL), and Bayes 
Cp (BCp). We found the Sr2 region to play an important role in 
APR in this germplasm. A model using Sr2 linked markers as fixed 
effects in G-BLUP was more accurate than MLR with Sr2 linked 
markers (p-value = 0.12), and ordinary G-BLUP (p-value = 0.15). 
Incorporating seedling phenotype information as fixed effects in 
G-BLUP did not consistently increase accuracy. Overall, levels of 
prediction accuracy found in this study indicate that GS can be 
effectively applied to improve stem rust APR in this germplasm, 
and if genotypes at Sr2 linked markers are available, modeling 
these genotypes as fixed effects could lead to better predictions.

Stem rust is a globally widespread and highly dam-
aging disease of wheat, capable of causing up to 

100% yield losses in susceptible varieties (Park, 2007). 
After adoption of resistant varieties during the 1950s, 
outbreaks of stem rust became rare. However, the recent 
emergence of a new stem rust race group named Ug99 
(Pretorius et al., 2000) capable of infecting the major-
ity of the worlds’ wheat germplasm (Singh et al., 2006), 
has highlighted the need for breeding efforts focused on 
durable stem rust resistance.

Resistance to stem rust generally falls into two 
categories: (i) all stage resistance, which is often 
conferred by race-specific genes involved in pathogen 
recognition and associated with a hypersensitive 
response, and (ii) slow rusting APR, which is quantitative 
resistance often conferred by multiple loci, and is not 
associated with a hypersensitive response. Quantitative 
resistance is usually considered more durable than that 
conferred by pathogen recognition genes (Parlevliet, 
2002); however, it must be improved over multiple cycles 
of selection using well-managed screening nurseries for 
evaluation.
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Genomic selection (Meuwissen et al., 2001; reviewed 
by Lorenz et al., 2011, and Heffner et al., 2009) is breeding 
technology that may increase rates of genetic gain for 
quantitative traits. With GS, a genomic prediction 
model is used to predict breeding values of selection 
candidates, and selections are made based on these 
predictions. A model training population consisting of 
relevant individuals that have been both genotyped and 
phenotyped is used to calibrate the prediction model.

Various genomic prediction models have been 
developed. Models differ according to how markers 
of different effect sizes are treated. Genomic best 
linear unbiased prediction (Bernardo, 1994; Piepho, 
2009) treats markers homogenously, whereas Bayesian 
methods such as BL (Park and Casella, 2008) and BCp 
(Habier et al., 2011) treat markers of different effect sizes 
heterogeneously. Such methods are expected to better 
model traits with large-effect quantitative trait loci (QTL).

Because moderate effect genes, such as Sr2 and 
Lr34, also known as Sr57, are known to be involved in 
stem rust APR (Sunderwirth and Roelfs, 1980; Dyck, 
1987; Singh et al., 2012), prediction models that attempt 
to realistically model these loci may be more accurate 
than a standard G-BLUP model. Markers linked to 
these loci could be predictive alone or modeled as fixed 
effects in combination with genome-wide markers. 
Similarly, seedling resistance phenotypes, which are 
often collected in addition to APR, could be useful fixed-
effects predictor variables. The objective of this study was 
to compare prediction models for stem rust APR and 
to determine if explicitly modeling large-effect loci or 
seedling phenotypes as fixed effects in a G-BLUP model 
could lead to higher accuracies than those achieved with 
G-BLUP or Bayesian models.

Materials and Methods

Phenotypic Data

Adult Plant Stage
Three hundred sixty five advanced CIMMYT breeding 
lines were used in all analyses. Quantitative stem rust 
APR was phenotyped at the international Ug99 stem rust 
screening nurseries: Kenya Agricultural Research Insti-
tute, Njoro, Kenya, and the Ethiopian Institute of Agricul-
tural Research, Debre Zeit, Ethiopia, between 2007 and 
2012, as described in Yu et al. (2011). Data was from 12 
environments (location and season combinations), three of 
which were at Debre Zeit. Kingbird and PBW343 served as 
moderately resistant and moderately susceptible check cul-
tivars. Each breeding line, excluding the checks, appeared 
in approximately four of the 12 environments, and 
appeared only once per environment. Each plot consisted 
of two 70 cm rows spaced 30 cm apart. Disease severity 
was measured visually on a modified Cobb scale (Peterson 
et al., 1948). Measurements were taken between the early 
and late dough stage and a week to 10 d later. Phenotypic 
distributions within environments are shown in Fig. 1. A 

Box-Cox transformation was applied before all analyses 
(Box and Cox, 1964) to avoid nonnormal residuals.

Seedling Stage
Lines were evaluated at the seedling stage for reaction 
to Ug99 stem rust race TTKSK, isolate 04KEN156/04, 
at the USDA-ARS Cereal Disease Laboratory using cool 
and normal post-inoculation temperature treatments. 
Seedlings were inoculated as in Jin et al. (2007) and then 
placed in a growth chamber with a 14 h photoperiod at 
18°C day and 15°C night for the cool treatment and 22°C 
day and 19°C night for the normal treatment. Seedling 
evaluations at both cool and normal treatments were 
replicated twice. Infection types on a zero to four scale as 
in Stakman et al. (1962) were recorded 14 d postinocu-
lation and then converted into a numerical value from 
zero to nine as described by Zhang et al. (2011). Stakman 
infection types ³ 3 were considered high infection types. 
Infection type ";" describes the observation of visible 
chlorotic spots associated with hypersensitive resistance. 
When multiple infection types were observed on a single 
leaf, all infection types were recorded starting with the 
most commonly observed infection type.

Heritability Estimation
Broad sense heritability (H2) on a line mean basis was 
calculated according to Hallauer et al. (2010). Variance 
components were estimated in R v. 3.0.1 (R Development 
Core Team, 2010) using the package lme4 (Bates and 
Maechler, 2010).

Genotypic Data

Genome-Wide Genotyping
Genotyping-by-sequencing (Elshire et al., 2011) was used 
to generate genome-wide markers according to the pro-
tocol described in Poland et al. (2012a). A total of 27,434 
polymorphisms were detected. Missing data were imputed 
using random forest imputation described in Poland et al. 
(2012b) as recommended by Rutkoski et al. (2013). Mark-
ers with >50% missing data were removed and a set of 
nonredundant GBS markers with pairwise r2 values < 0.8 
were selected (Carlson et al., 2004), leaving 4040 markers.

Loci Targeted Genotyping
Markers targeted to Sr2 and Lr34 were genotyped using 
sequence tagged site (STS), simple sequence repeat, and 
KASPar (www.lgcgenomics.com) assays. All KASPar assays 
were run at the Eastern Regional Small Grains Genotyping 
Laboratory, Raleigh, NC. For Lr34, two gene based KASPar 
assays were used to determine presence or absence of the 
resistance allele based on sequence polymorphism reported 
by Lagudah et al. (2009). The STS marker csLV34 (Lagudah 
et al., 2006), 0.4 cM from Lr34, was also assayed. For Sr2, 
the simple sequence repeat marker gwm533 (Spielmeyer et 
al., 2003), the STS marker csSr2 (Mago et al., 2011), and a 
KASPar assay based on the polymorphism targeted by csSr2 
(referred to as csSr2_KASPar) were used.



rutkoski et al.: genomic selection for quantitative resistance	 3 of 10

Genotypic Value Estimation
The R package rrBLUP (Endelman, 2011) was used to cal-
culate the restricted maximum likelihood (REML) solu-
tions for the mixed model

Y = Xβ + Zu + e

where Y is the vector of phenotypes, β is the vector of 
environment effects treated as fixed, u is the vector of 
genotype effects treated as random, X and Z are the 
design matrices relating β and u to the observations in 
Y, and e is the vector of residual errors. Genetic values, 

Figure 1. Phenotypic distributions of stem rust severity within each environment. OS, off-season; MS, main-season.
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u, were deregressed according to Garrick et al. (2009). 
Deregressed genetic values, YGV, were calculated as

GV

2

=
-

su

uY
PEV1

where 2su  is the genetic variance and PEV is a vector 
of prediction error variances. Solutions for both 2su  
and PEV were returned from the mixed model fit 
using rrBLUP. Deregressed genetic values, YGV, were 
used to validate prediction models. Deregression was 
appropriate because individuals had different numbers 
of observations. Genetic values for individuals with few 
observations are shrunk more towards zero than genetic 
values of individuals with many observations.

Genome-Wide Association
Genome-wide association was performed using a mixed 
model accounting for kinship (Yu et al., 2006). Accord-
ing to Kang et al. (2010), variance components were esti-
mated once by fitting the mixed model:

Y = Xb + Zu + e
( ) 2Var = suu G  and ( )= s2Var I ee . I is an identity matrix 

and G is a marker relationship matrix which was 
calculated according to VanRaden (2008), implemented 
in the R package GAPIT (Lipka et al., 2012). For each 
marker k with MAF ³ 0.05, a total of 3903 markers, we 
estimated its effect βk and F-statistic, testing the null 
hypothesis that βk = 0, in the model:

Y = Xb + bkXk + h

bk is the effect of marker k, Xk is the marker genotype 
matrix of marker k, and  ¢= s +s2 2Var(  ˆ) ˆuZGZ Ieh . One 
thousand permutations (Churchill and Doerge, 1994) 
were used to calculate the p-value significance threshold 
at an experimentwise a of 0.05.

Prediction Models

Fixed Effects Models
Two MLR methods were used, A and B. MLR A con-
sisted of a marker selection and marker effect estimation 
step. Both marker selection and marker estimation were 
performed within the model training set only. For vari-
able selection, p-values from a genome-wide association 
analysis were used to rank markers. No kinship correc-
tion was used because markers that capture kinship are 
useful for prediction within the population of interest, 
even though they may not be linked to causative loci. 
Then, for each iteration i through l, a marker was added 
to the model:

YGV = 1nb0 + Xibi…Xlb l + e

where b0 is the mean, bi is the effect of marker i, and Xi 
is the marker genotype matrix of marker i. After each 
iteration, the fivefold cross validation accuracy was 
calculated within the training set and when Accuracyl–1 

> Accuracyl, the model with l – 1 markers was selected. 
Predicted breeding values of an individual j were 
calculated as

	
1

0
ˆ ˆˆ

l

j i ij
i

y x
-

= b + bå
For MLR B, the marker selection step was done only 
among the five markers linked to candidate genes.

Mixed Models
For G-BLUP (Bernardo, 1994; Piepho, 2009), breeding 
values were predicted using the mixed model.

YGV = 1nb0 + Zu + e

u ~ N(0, Gs2ˆu )

where the solutions for u consist of the genomic 
estimated breeding values. G-BLUP was implemented 
using the R package rrBLUP (Endelman, 2011). G-BLUP 
A was a version of G-BLUP that included selected 
markers as fixed effects in the G-BLUP model and all 
markers as random effects. By selecting markers as fixed 
effects, we assume that each selected marker has a unique 
variance. For fixed effect variable selection, p-values from 
a genome-wide association analysis without structure 
correction were used to rank markers, then for each 
iteration i through l, a marker was added to the model

YGV = 1nb0 + Xibi...Xlbl + Zu + e

u ~ N(0, G 2ŝu )

for each iteration fivefold cross validation accuracy 
within the training set was calculated. When Accuracyl–1 
> Accuracyl, the model with l – 1 fixed effect markers 
was selected. Predicted breeding values of each 
individual j were calculated as 

1

0
ˆ ˆ ˆ u

l

j i ij j
i

y x
-

=b + b +å

For G-BLUP B, the fixed effect marker selection step was 
done only among the five markers linked to candidate 
genes. For G-BLUP T, the fixed effects were the seedling 
phenotypes for the normal and cool treatments.

Bayesian Models
The general model for BL (Park and Casella, 2008) and 
BCp was:

YGV = 1nb0 + Xb + e

X is a design matrix for the markers, and b is a vector of  m 
marker effects. Predicted breeding values were estimated as:

=b + bå0
ˆ ˆ ˆ j i ij

i

m

y x

For BL, the marginal prior of marker effects was a double 
exponential (Pérez et al., 2010). Bayesian Lasso was 
implemented in the R package BLR (de los Campos and 
Perez Rodriguez, 2010). For BCp (Habier et al., 2011), the 



rutkoski et al.: genomic selection for quantitative resistance	 5 of 10

prior for b i depends on a common marker variance and 
the prior probability, p, that marker i has no effect. The 
priors and prior parameters were as described in Habier 
et al. (2011). BCp was implemented in R using code 
adapted from R.L. Fernando (personal communication, 
2010). For both BL and BCp, a total of 60,000 iterations 
were used and the first 20,000 were excluded as burn-in.

Prediction Model Accuracy Calculation
Prediction accuracies were calculated using 10-fold cross 
validation. Cross validation folds were selected to be rep-
resentative samples using cluster assignment information 
from hierarchical agglomerative clustering (Fraley and 
Raftery, 2002) implemented using the R package ‘mclust’ 
(Fraley et al., 2012). One accuracy value was computed 
for each model by computing the Pearson’s correlation 
(r) between the deregressed genetic values YGV and the 
predicted breeding values. Accuracies were computed 
using two different marker sets: GBS markers only, and 
all available markers. In addition to accuracy, Spearman’s 
rank correlations between the estimated breeding values 
for all possible pairs of prediction models was computed 
to compare prediction model outcomes.

Significance Testing among Prediction  
Model Accuracies
Statistical significance between prediction model accura-
cies was determined using paired, two-sided t tests per-
formed by bootstrapping. The inference space for model 
comparison was CIMMYT spring wheat absent of major 
genes effective against stem rust race TTKST, evaluated 
for stem rust APR between 2007 and 2012, and identi-
fied as candidates for release to international partners, a 
population of about 500 lines. The set of 365 individuals 
from that population was randomly split into a training 
set of 265 individuals and a validation set of 100 individu-
als. Then, for each iteration, bootstrapped samples of the 
training set and validation sets were drawn. To simulate 
the sampling variability of polymorphisms detected using 
GBS, a sample of GBS markers of size 2694 (2/3 of the 
total markers) was also drawn. This is equivalent to tak-
ing a bootstrap sample of markers and then only using 
nonredundant markers for model fitting. Selection of non-
redundant markers is a common practice before GWAS 
or GS. Using this sampled dataset, prediction accuracy 
was measured using all prediction models except BCp and 
BL, which were excluded to reduce computational burden. 
This process was repeated for 1000 iterations. For a given 
pair of models, the accuracy vectors were subtracted to 
create a distribution of differences. A two-tailed p-value 
was calculated by calculating the frequency of values 
above or below 0, multiplied by two. Mean accuracies for 
each model were also calculated.

The bootstrap t testing procedure for model 
comparison relies on several assumptions. The first 
assumption is that the sample of 275 individuals in the 
training set and the sample of 100 individuals in the 
validation set are representative of the population from 

which they were originally sampled, which is met as 
long as the samples are sufficiently large and selected 
from the population at random. The second assumption 
is that the observations, in our case deregressed genetic 
values, are independent. Nonindependence can arise 
if the values consist of repeated measurements on the 
same individuals or if the data consists of clusters of 
individuals more similar to each other than what would 
be expected based on random sampling from the original 
population. The third assumption is that the observations 
are identically distributed, meaning that there are no 
systematic trends in the mean or variance of the values.

Results
Phenotypic Data
Adult plant stem rust resistance was highly heritable, with 
a line mean broad sense heritability of 0.82. The absence 
of race-specific resistance genes effective against TTKST 
in the set of 365 lines was confirmed with seedling phe-
notypes, which were all high infection types under nor-
mal temperatures. Variation in high infection types was 
observed among the susceptible lines ranging from Stak-
man infection type “3” to “3+”. Under lower temperature 
conditions, 15 of the lines had low infection types ranging 
from “;13” to “3+;”. The resistance genes conferring these 
low infection types at the cool temperature treatment 
are not known. The seedling phenotypes converted to a 
numerical scale were weakly correlated with the genetic 
values for APR, with correlations of 0.1 and 0.19 for the 
normal and cool treatments, respectively. Both correla-
tions were significant, with p-values of 0.049 and 3 4 10  −×
for the normal and cool treatments, respectively.

Genome-Wide Association Analysis
Eight markers were associated with stem rust resistance 
(Table 1). csSr2_ KASPar, explained 27% of the variation 
in the genotypic values. Both csSr2 and csSr2_ KASPar 
are tightly linked to Sr2 located on chromosome 3BS 
(Mago et al., 2011). Two other markers associated with 
stem rust resistance are known to be located on chro-
mosome 3BS based on the Synthetic ´ Opata genetic 
map (Poland et al., 2012a). The remaining four associ-
ated markers have unknown map locations. Pairwise 
associations between significant markers, measured in 

Table 1. Markers significantly associated with adult 
plant stem rust resistance.

Marker MAF† p-value Effect r2 Chromosome
csSr2_KASPar 0.29 3.38 ´ 10–10 0.54 0.27 3BS
csSr2 0.16 1.21 ´ 10–8 0.65 0.17 3BS
GBS_13164 0.19 1.62 ´ 10–6 0.6 0.15 –
GBS_11008 0.29 7.09 ´ 10–6 0.49 0.08 3BS
GBS_1863 0.20 1.01 ´ 10–5 0.51 0.17 –
GBS_7565 0.30 1.19 ´ 10–5 0.48 0.07 –
GBS_10286 0.12 2.83 ´ 10–5 –0.61 0.08 –
GBS_20803 0.32 4.27 ´ 10–5 0.42 0.19 3BS
†Minor allele frequency.
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r2 indicated that two markers of unknown map location 
are associated, r2 ³ 0.4, with markers known to be on 
chromosome 3B (Fig. 2). The two remaining markers of 
unknown location are not associated with each other or 
other significant markers.

The marker relationship matrix shows several small 
groups of closely related individuals, indicating family 
structure (Fig. 3). Based on pedigree information, 147 of 
the individuals were derived from 26 full-sib families. 
Individuals derived from the same full-sib family were 
found to group together based on the relationship matrix 
(Fig. 3). Principal components analysis of the relationship 
matrix also illustrated a similar pattern of family 
relationships (Fig. 4); however, principal components one 
and two explained only 14.4 and 2.9% of the variation, 
respectively. Correcting for kinship during genome-
wide association was necessary to obtain uniformly 
distributed p-values (Fig. 5). Further correcting for 
population structure using principal components did not 
improve uniformity of p-values.Figure 2. Pairwise associations, measured in r2, between markers 

significantly associated with adult plant stem rust resistance.

Figure 3. Heatmap of the marker relationship matrix illustrating family structure. Individuals derived from the same full-sib family share a 
common symbol.
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Prediction Model Accuracies
The marker set containing all markers, both GBS and 
gene targeted markers, always resulted in higher accura-
cies than the marker set containing only GBS markers 
based on accuracies calculated using cross validation 
(Table 2) and bootstrapping (Table 3). Among the GS 
models, G-BLUP B and G-BLUP A lead to the high-
est cross validation prediction accuracies, followed by 
G-BLUP T, BL, and BCp. Based on a bootstrap signifi-
cance testing procedure, probabilities that pairs of model 
accuracies were different due to chance (p-values) for all 
models, except BL and BCp were estimated (Table 3). For 
comparisons between G-BLUP B, and ordinary G-BLUP 
or MLR models, p-values were always <0.15.

The markers that were selected in MLR A, and 
G-BLUP A were csSr2_ KASPar, GBS_20803, csSr2, and 
GBS_1863 (Table 4). The map locations of GBS_20803 and 
GBS_1863 are unknown. The markers selected by G-BLUP 
B, the most accurate model, were csSr2_KASPar and csSr2. 
Differences in prediction model outcomes between pairs 
of prediction models are shown by their Spearman’s rank 
correlations between estimated breeding values from cross 

Figure 4. Principal components (PC) analysis of the marker relationship matrix. Individuals derived from the same full-sib family share a 
common symbol.

Figure 5. Quantile-quantile plot of the p -values from genome-
wide association comparing the p -value distribution to a uniform 
null distribution.
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validation for all pairs of models shown in Supplemental 
Table S1. MLR B had the lowest correlations between all 
other models followed by MLR A.

Discussion
Genetic Architecture
The association analysis results confirm the importance of 
the Sr2 region, with the most significant Sr2 linked marker 
explaining 27% of the variation. Out of eight significant 
markers, only two markers did not appear to be at the Sr2 
region. Sr2 linked markers have been reported by several 
stem rust APR studies (Yu et al., 2011; Njau et al., 2012; 
Singh et al., 2013). Interestingly, the most significant Sr2 
linked marker was csSr2_ KASPar. This marker gave dif-
ferent results than the STS marker of csSr2, which has been 
reported to not be diagnostic for Sr2 in CIMMYT germ-
plasm (Mago et al., 2011). Our results suggest that csSr2_ 

KASPar is capturing a different haplotype than the csSr2 
STS marker. This may be due to restriction site polymor-
phism at the restriction enzyme cut site of the STS marker. 
Marker gwm533, which is still used for Sr2 genotyping, was 
not associated with resistance in this study, suggesting that 
this marker should be discontinued for Sr2 genotyping. In 
contrast with other studies (Dyck, 1987; Krattinger et al., 
2009; Singh et al., 2012), this study did not find Lr34 to be 
associated with adult plant stem rust resistance. The fre-
quency of the Lr34 resistance allele was 0.36, thus the lack of 
association between Lr34 and resistance was not due to low 
minor allele frequency. In the association mapping study by 
Yu et al. (2011), which used a similar set of germplasm and 
environments, Lr34 was also not found to be significant; 
however, several significant marker interactions with Lr34 
were detected. Based on the inconsistencies in detection and 
the reported marker interactions, the effect of Lr34 appears 
to vary depending on the genetic background.

The relatively low number of QTLs that we detected 
is due largely to the confounding of QTL effects with 
family structure. Without correcting for population or 

Table 2. Cross validation prediction accuracies 
for adult plant stem rust resistance using different 
prediction models and marker sets.

Prediction model† All markers GBS‡ markers only
MLR A 0.477 0.446
MLR B 0.468 –
G-BLUP A 0.607 0.577
G-BLUP B 0.618 –
G-BLUP 0.568 0.563
BL 0.579 0.561
BCp 0.578 0.558
G-BLUP T 0.591 0.573
†MLR A, multiple linear regression A, fixed effects selected among all markers; 
MLR B, fixed effects selected among candidate gene linked markers; G-BLUP 
A, genomic best linear unbiased prediction A, marker relationship matrix and 
fixed effects selected among all markers; G-BLUP B, marker relationship 
matrix and fixed effects selected among candidate gene linked markers; BL, 
Bayesian Lasso; BCp, Bayes Cp; G-BLUP T, marker relationship matrix and 
seedling phenotypes as fixed effects.
‡Genotyping-by-sequencing.

Table 3. Probabilities that pairs of model accuracies are not different based on bootstrapping.†

Model, accuracy
GBS markers only All markers

G-BLUP, 0.58 G-BLUP A, 0.54 G-BLUP T, 0.57 MLR A, 0.36 G-BLUP, 0.59 G-BLUP A, 0.63 G-BLUP B, 0.66 G-BLUP T, 0.58 MLR A, 0.51 MLR B, 0.56
GBS markers only
   G-BLUP, 0.58 1 0.52 0.95 0.08 0.69 0.39 0.12 0.99 0.57 0.79
   G-BLUP A, 0.54 0.52 1 0.84 0.1 0.43 0.14 0.07 0.79 0.82 0.9
   G-BLUP T, 0.57 0.95 0.84 1 0.21 0.89 0.65 0.47 0.84 0.72 0.88
   MLR A, 0.36 0.08 0.1 0.21 1 0.08 0.02 0.01 0.18 0.15 0.08
All markers
   G-BLUP, 0.59 0.69 0.43 0.89 0.08 1 0.44 0.15 0.91 0.51 0.67
   G-BLUP A, 0.63 0.39 0.14 0.65 0.02 0.44 1 0.62 0.68 0.15 0.34
   G-BLUP B, 0.66 0.12 0.07 0.47 0.01 0.15 0.62 1 0.5 0.09 0.12
   G-BLUP T, 0.58 0.99 0.79 0.84 0.18 0.91 0.68 0.5 1 0.68 0.84
   MLR A, 0.51 0.57 0.82 0.72 0.15 0.51 0.15 0.09 0.68 1 0.75
   MLR B, 0.56 0.79 0.9 0.88 0.08 0.67 0.34 0.12 0.84 0.75 1
†G-BLUP A, genomic best linear unbiased prediction A, marker relationship matrix and fixed effects selected among all markers; G-BLUP T, marker relationship matrix 
and seedling phenotypes as fixed effects; MLR A, multiple linear regression A, fixed effects selected among all markers; G-BLUP B, marker relationship matrix and 
fixed effects selected among candidate gene linked markers; MLR B, multiple linear regression B, fixed effects selected among candidate gene linked markers.

Table 4. Markers used as fixed effects in different 
prediction models, their minor allele frequencies 
(MAFs), and the frequency they appeared in the 
models during cross-validation.†

Marker MAF
Frequency selected as fixed effects

MLR A MLR B G-BLUP A G-BLUP B
csSr2_KASPar 0.29 1 1 1 1
csSr2 0.16 0.5 1 0.8 1
GBS_20803 0.31 0.9 – 0.6 –
csLV34 0.37 0 0.4 0 0
gwm533 0.34 0 0.2 0 0
GBS_1863 0.20 0.1 0 0 0
†MLR A, multiple linear regression A, fixed effects selected among all markers; 
MLR B, fixed effects selected among candidate gene linked markers; G-BLUP 
A, genomic best linear unbiased prediction A, marker relationship matrix and 
fixed effects selected among all markers; G-BLUP B, marker relationship 
matrix and fixed effects selected among candidate gene linked markers.
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family structure, 138 markers exceed the significance 
threshold, and the p-values do not follow a uniform 
distribution, indicating many spurious associations. 
Confounding of marker effects with family structure 
is not a problem for GS because GS capitalizes on 
relationship information to predict breeding values.

Prediction Models
A G-BLUP model including Sr2 linked markers as fixed 
effects was the most accurate model tested, and the prob-
ability that this model was different from MLR with Sr2 
linked markers alone and G-BLUP with GBS markers only 
was 0.12 and 0.15, respectively. These results suggest that GS 
based on G-BLUP with Sr2 linked markers as fixed effects 
would lead to the greatest genetic gain if GS was imposed 
on the specific dataset used in this study. However, if GS 
were to be applied on a new sample of individuals, there is 
some probability that the outcomes of GS using G-BLUP 
with GBS markers only, or MLR using Sr2 linked markers 
only would be just as favorable as the outcomes of GS using 
G-BLUP with Sr2 linked markers as fixed effects.

Our finding that modeling selected markers as fixed 
effects in G-BLUP leads to improved accuracy over 
standard G-BLUP agrees with a recent simulation study 
(Bernardo, 2013) which found modeling a large-effect 
locus as fixed to be advantageous when heritability of the 
trait was >0.5 and the proportion of the genetic variance 
explained by the locus was >0.25. It is important to 
emphasize that, in this study, the markers selected as 
fixed effects were not assumed to be causative loci, thus 
variable selection and fixed effect estimation should 
occur each time the prediction model is trained.

The correlation between low temperature seedling and 
adult plant phenotypes was interesting, but not sufficient 
to be useful in combination with GS in the germplasm 
tested. Using the seedling data as fixed effects in G-BLUP 
did not consistently improve the prediction accuracy. 
Seedling data could be more predictive in another set of 
germplasm. On the other hand, if the level of APR can be 
explained well by seedling infection types, the resistance 
may be mostly qualitative, due to single race-specific 
genes. Thus, it may not be desirable to use this information 
source even if it is predictive of adult-stage resistance.

If we assume that two cycles of GS can be completed 
for every one cycle of phenotypic selection, and all other 
factors remain constant, then gain from selection from 
GS will exceed the gain from phenotypic selection when 
(GS accuracy × 2) is greater than the phenotypic selection 
accuracy. The GS accuracies we achieved in this study are 
sufficiently high to achieve greater gain from selection per 
unit time compared with phenotypic selection. Phenotypic 
selection accuracy, estimated as 2H , was 0.9, and (GS 
accuracy × 2) was 1.12. The GS accuracies we observed 
were similar to those observed in a GS study that evaluated 
prediction accuracies for stem rust resistance in biparental 
populations (Ornella et al., 2012), however the results are 
difficult to compare due to different training population sizes.

Conclusions
This study indicates that GS would be an effective breed-
ing method for quantitative stem rust resistance despite 
the fact that the trait is highly heritable and is conferred in 
part by large-effect loci. Although one of the advantages of 
GS is that prior knowledge about loci affecting the trait is 
not needed, we found that in this dataset using prior infor-
mation to selectively genotype markers at loci previously 
found to have a moderately large effect on the trait enabled 
us to achieve higher prediction accuracies especially when 
using models which treat large-effect loci as fixed effects. 
To ensure the best results from GS, markers linked to large 
to moderate effect genes or loci previously found to affect 
the traits of interest should be included in the genotypic 
data as long as doing so does not delay selection or incur 
excessive costs. Using cross-validation within the train-
ing data, one can then decide if these loci-specific markers 
should be modeled as fixed effects. Although the alleles at 
known loci may be different from those of the population 
where the loci were detected, they may still be important 
regions that should be tagged with markers. As more genes 
are mapped and cloned in wheat for various traits, the 
effect of utilizing gene information for genomic prediction 
of other traits in wheat can be further studied.
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